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SUMMARY 

This paper describes a second-order method to calculate approximate solutions to flow of viscous 
incompressible fluid between rotating concentric spheres. The governing partial differential equations are 
presented in the stream-vorticity formulation and are written as a series of second-order equations. The 
technique employed makes use of second-order approximations for all terms in the governing equations and 
is dependent upon the direction of flow at a given point. This upwind technique has allowed us to generate 
approximate solutions with larger Reynolds numbers than has generally been possible for second and 
higher-order techniques. Solutions have been obtained with Reynolds numbers as large as 3000 and with 
grids as fine as a 40 x 40 mesh. Results are displayed in the form of level curves for both the stream and 
vorticity functions. A dimensionless quantity related to the torque acting on both spheres has been 
calculated from the approximate solution and compared with other results. Results with smaller Reynolds 
numbers such as 100 and 1000 are in excellent agreement with other published results. 
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INTRODUCTION 

The purpose of this paper is the development of a new approximation technique to calculate the 
numerical solution of a class of Navier-Stokes problems. The problem under study is that of the 
flow of a viscous incompressible fluid between two rotating concentric spheres. It is felt that the 
application of a new numerical technique to the rotating spheres problem is appropriate for two 
reasons. First, researchers in numerical analysis and fluid dynamics are always interested in 
numerical techniques that are accurate and stable for a wide range of parameters (see References). 
As such, the technique under study is of second-order accuracy and when applied to the spheres 
problem has generated numerical solutions with Reynolds numbers as large as 3000. Secondly, 
fluid motion inside rotating containers has a variety of applications in engineering such as the 
study of gyroscopes and centrifuges. Applications also arise in geophysics where atmospheric and 
oceanic circulations are studied.'-4 The spherical geometry was chosen partly because of its 
applications and partly because the Navier-Stokes equations, written in spherical co-ordinates, 
are a particularly difficult set of partial differential equations to solve and represent a good 
benchmark for the numerical technique developed. 
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The problem to be studied may be formulated as follows. Consider two concentric spheres 
centred at the origin with radii rI and r2 respectively (Figure 1). The outer and inner spheres 
rotate about the y-axis at angular speeds of w1 and w2. Thus the fluid contained in the spherical 
annulus bounded by the spheres is set into motion. 

By the assumption of rotational symmetry, it is sufficient to study only a cross-section of the 
region formed by intersecting the spherical annulus with quadrant 1 of the x-y plane (Figure 2). 
Thus if ( r ,  0) represent the polar co-ordinates in the plane, then the dimensionless Navier-Stokes 
equations to be satisfied are 

.L 
Figure 1 
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where 

A X I 

Figure 2 

The velocity vector is given by V = (u, v,  w) where u and v are the velocity components in the 
direction of increasing r and 6 respectively, and w is the component perpendicular to the 
meridional plane. The streamfunction and vorticity are related to V by 

84 
06 

u = 7-/r2 sin 6, 

84 u = - -/r sin 6, 
ar  

w = R/r sin 6. 

The Reynolds number Re  is proportional to 

(w2 - w1 )2(r2 - r1 )/v9 

(4) 

where v is the kinematic viscosity of the fluid. Boundary conditions for this problem may be 
written as + = a+/& = 0 on arcs AD and BC, (7) 

$ = R = M = O  onCD,  (8) 
R =  w,r:sin2 8 on AD, (9) 

R =  w,r:sin26 on BC. (10) 
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The numerical technique to be applied to the above problem is a finite difference technique. 
However, what is of particular interest is that different approximations to the spatial derivatives 
are made at  different grid points. In other words, before generating discrete approximations to 
equations (2H3)  at a specific point, the direction of the flow at the point is examined. This is easily 
done by checking the signs of I), and $0. 

Next a finite difference approximation dependent on these values is generated which consti- 
tutes one of many equations in the unknown values for $, R and M obtained through similar 
expansion at all the other grid points. Through appropriate selection of finite differences, a system 
of equations is generated whose matrix of coefficients does not contain diagonal elements whose 
magnitudes become arbitrarily small with respect to the magnitudes of the off-diagonal elements. 
As a result, iterative techniques such as successive over-relaxation used to approximate solutions 
to systems of equations may be more successfully applied to the generated system of equations. 
This technique is similar to that employed by Greenspan' and Schultz and Greenspan6 in an 
application of the upwind finite difference technique to the problem of fluid inside rotating 
spheres. However, what makes the current technique attractive is that all approximations are 
chosen to be second-order accurate. 

Dennis and Quartapelle' present solutions to this problem for large grid sizes and for Reynolds 
numbers up to 1000. Dennis and Singh,* using the method of series truncation, obtained solutions 
for Reynolds numbers up to 2000. Stewartson4 and Pedlosky3 and others used singular 
perturbation techniques. Pearson' obtained solutions for Reynolds numbers from 10 to 1500. 
Munson and Joseph" used a perturbation method for small Reynolds numbers and a series 
representation technique to obtain solutions for Reynolds numbers up to 1000. Also some 
experimental work was done on this problem by Wimmer.' ' 

Thc technique described in this paper has been successfully applied to this problem for values 
of the Reynolds number as large as 3000 and for grids containing as many as 40 points in both the 
directions of r and 8. Results are given for the stream and vorticity functions for a range of 
Reynolds numbers and grids. In addition, a dimensionless coefficient related to torque on the 
spheres is numerically computed from approximate solutions produced by the technique. 
Displays of the data are made as a function of Re and mesh size and results are compared with 
those in other works. 

METHOD 

To implement the finite difference technique, an array of nodes is placed over the region in 
Figure 2. The distance between two consecutive points along the arc r = constant is given by AO, 
and the distance between two consecutive points along the line 8 = constant is given by Ar. Next, 
finite difference approximations to equations ( l ) ,  (2) and (3) are generated at each node inside the 
region as follows. 

An approximation to D2+ = t+l / , ,+( l /rz)$~~ - (l/r2)(cOtO)Jle = M may be written as (see 
Figure 3) 

The truncation error in the approximation of each term is O(Ar2) or O(A02).  
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Figure 3 

When equation (1 1) is applied at each point inside the region, the result is a system of 
equations, linear in unknown $ values, whose matrix of coefficients has the property that the 
magnitude of the diagonal element is greater than or equal to the sum of the magnitudes of the 
off-diagonal elements within any row. 

Multiplication of both sides of equation (1 1) by Ar2 yields 

where E = Ar/AO. Similar approximations are made for D2 M and D2R. 

write 
In order to generate an approximation for the term (Relr’ sin 0) [$, i le  - $ORr] in equation (2), 

The ai will be chosen so that aiRi represents a second-order approximation to 
(Relr’ sin 0 )  [ll/,RO - $OR,]. Furthermore, the direction of flow partly determines the choices of 
the ai, so that the magnitude of the diagonal elements in the final coefficient matrix remain large 
relative to the magnitudes of the off-diagonal elements. This technique gives a very stable system 
which allows one to obtain solutions for larger Reynolds numbers than has generally been 
possible for high-order methods. Next, expand each of the Ri above in a Taylor series about the 
central point in Figure 3 up through third-order terms and then combine terms with like 
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derivatives. This yields 

The error term is O(Ar4 + AO4). 
By equating coefficients of like terms of R and its partial derivatives, we get 

8 

i = O  
1 ai = 0, 

ul - u3 + us - a6 - u7 .t u, = - (16) 
u2 - u4 + us + a6 - u7 - u, = Re$',/rzA8sin 8, (17) 

a, + a3 + + + c17 + 0, (18) 

-a6 + a7 0, (19) 

+ a4 + + a6 + a7 + 0. (20) 
The first equation results from equating coefficients of R,, the next two result from equating 

coefficients of the first partial derivatives of R, and the next three result from equating coefficients 
of the second partials of R. Any attempt to equate coefficients of the third partial derivatives of R 
(specifically R,,, and R,,) results in equating the linear combinations of the ui that appear in (16) 
and (17) above to 0. This results in an inconsistent system of equations. Thus the inability to 
equate coefficients of these third partial derivatives results in error terms proportional (Ar)3 and 

Since Ar and A 8  are of the same order of magnitude, there is no need to attempt to equate 
coefficients of Rree and fir,,. Thus additional error terms proportional to Ar(A0)' and (Ar)'AO 
will be generated. However, these will be of the same order as the unavoidable error terms. The 
advantages are fewer constraints on the ui and a greater flexibility in choosing an approximation 
based on the flow at any point. 

Arsin 8, 
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Treating a6, a7 and a, as independent choices, equations (15H20) imply 

NO = 2(a6 + a8), 

u5 = a6 - a, +a,. (26) 

Since the direction of flow is represented by the signs of i,br and IC/e, the choices of a6, a7 and a, 
are as described in Table I. In each case it can be shown that 

Unfortunately this will not yield a diagonally dominant matrix of coefficients, but on the other 
hand it is easily shown that 

R 

Furthermore, since a. is guaranteed to be negative, when equation (13) is combined with the 
approximation for D2R described previously, the ratio of the sum of the magnitudes of the off- 

Table I. Definitions of as, a7 and a, as functions of the signs of $r and 1(/8 
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diagonal terms to the magnitude of the diagonal term in the coefficient matrix is bounded by 
a constant independent of Re. If central difference approximations are used for $r  and $0, then the 
discretization of equation (2) is complete. 

In order to generate an approximation for equation (3), the terms 

1 
r2 sin le D ~ M + -  C$rMe - 

may be approximated by following the same procedure applied to equation (2). The remaining 
differential terms in equation (3) are all approximated by central difference approximations. 

The boundary conditions are handled in a similar way to the methods described in Ref- 
erences 5,6  and 12, with the exception that all boundary conditions used in this paper are second- 
order. On the line l e=n/2  we apply the difference equations with the following symmetry 
sub~titution:~- 

$(r,  4 2  + Ale) = - $(r,  4 2  - Ale), 

Q(r, 7112 +Ale)= Q(r, n /2  -Ale), 

M(r ,  n / 2  + Ale)= - M ( r ,  n / 2  - Ale). 

At each point of AD apply the equation 

for j=O,  1,2,  . . ., 3$(r1+Ar,jAle) M(r,+Ar,jAle) M ( r ,  , jAle) = - 
Ar 2 

At each point of BC apply the equation 

349(r2-Ar, jAle) M(r2 -Ar ,  jAle) - for j=O,  1, 2, . . ., 
2 

M ( r 2 ,  jAle)= 
Ar2 

See Reference 12 for a development of this type of boundary condition. Now define the inner 
boundary as the set of grid points that lie a distance Ar from the sides AD and BC. Values at these 
grid points are used to guarantee that the normal derivative conditions of the streamfunction are 
satisfied. 

Stream values on the inner boundary of the side AD are determined from 

$ro = (- ll$,, + lSt,bl - 9$2 + 2t,h3)/6Ar + 0(Ar3) ,  

where the points are as in Figure 4 and i,br0 = a$/arlo.  Since $ro = 0 and $o = 0, we can solve 
for t+hl: 

The higher-order approximation in (32) is used so that when (32) is inserted in (30) the O ( A r 2 )  
accuracy is maintained. The formulae for the side BC are similar. 

$1 = $2 /2 -$3 /9+O(Ar4) -  (32) 

RESULTS AND DISCUSSION 

The systems of equations generated by the approximations described in the previous section have 
been solved by the method of successive over-relaxation. Solutions were obtained for a variety of 
Reynolds numbers and mesh sizes, including a solution for the case Re = 3000 and a 40 x 40 grid. 
All results described in this paper were obtained with values of rl  = 0.5, r2 = 1.0 and either w1 = 0, 
w2 = 1 or w1 = 1, w2 = 0. (However, a wide variety of cases were run.) The convergence criteria 
were varied for different Reynolds numbers and mesh sizes, but in all cases the convergence 
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Figure 5. Level I(, curves multiplied by lo4; Re = 1O00, w 1  = 0, w2 = 1, Ar = 0.025, A 8  = 2.25" 

criterion was below Level curves for both tj and R are given in Figures 5-8. Figures 5 and 6 
display results for a Reynolds number of lo00 and Figures 7 and 8 display results for a Reynolds 
number of 3000. Both sets of results correspond to the finest grids attempted for the problems. 
For Re = 3000, mesh sizes are Ar = 0.0125 and A0 = 0.039, and for Re = 1000, Ar = 0.025 and 
A0 = 0.039. 

For small values of the Reynolds number the method converged rapidly, with relaxation 
parameters of rJI = 1.0, r, = 0.9 and r ,  = 0.9. For large Re the method required a small value of r ,  
€or convergence. We would start with a small value of r ,  = 0001 and slowly increase it until 
r,  = 0.2 or 0.3. The accuracy of the results has been checked in several ways. First, comparisons 
were made between results for Re = 1000 displayed in Figures 5 and 6 and those obtained in other 
~ o r k s . ~ - ' * ~  These results show the same type of patterns in level curves for tj and R that we 
observed. All exhibit the existence of a recirculating zone near the equator and disjoint closed 
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Figure 6. Level a curves; Re = 1O00, w ,  = 0, w2 = 1, Ar = 0.025, A0 = 2.25" 

Table 11. Results showing $ and R at (r, 0)= (0~75,814) with Reynolds number 3000, w1 = O  
and w 2  = 1 

~~ ~ ~ ~ ~ ~ ~ ~ ~ * n 
(Ar ,  (at r = 0.75, 0 = s/4) YO change (at r = 0.75, 0 = n/4) YO change 

(005, 0.079) 0.0006132 0.2119 

(0.025, 0.039) 0.000725 0.2137 

(0.0125, 0-039) 00007414 0.2123 

18.3% 085% 

2.2% 0.66% 

curves for the streamfunction. Another accuracy check was an evaluation of the fully discretized 
approximations to equations (1) and (2) at the final solution. The results, called residuals, were 
printed. When the $-values from Figure 7 were put into equation (12), the magnitudes of the 
residuals were bounded above by loT9; similarly, when the R-values from Figure 8 were put into 
appropriate approximating equations, the magnitudes of the residuals were bounded above by 
lo-'. A third accuracy check was via a display of solutions written as a function of A 0  and Ar. 
For example, Table I1 shows results for $ and R obtained at the midpoint of the region as a 
function of Ar and At?. With the last grid refinement, the centre values for $ changed by only 2.2% 
and the centre values for R changed by less than 1%. 
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Figure 7. Level IC, curves multiplied by lo4; Re = 3000, w1 = 0, w2 = 1, Ar =0.0125, A0 = 2.25" 

A final check for accuracy was made through the calculation of a dimensionless coefficient 
related to the torque, defined in Reference 8 by 

Through the use of equation (6), this becomes 

The integral is to be evaluated on either sphere. When evaluated on both spheres, the integral 
should yield values that are opposites. 

Table I11 depicts the approximated integral values for a range of solutions. The integral was 
evaluated using Simpson's rule and second-order accurate, three-point approximation for aR/ar. 
Results in Table I11 are comparable with corresponding results recently published in Reference 7. 
In fact, because of a more refined grid and strict convergence criterion, we show better agreement 
between the non-dimensional torque on both spheres for Re = 1OOO. 

CONCLUSIONS 

This work has shown that the described method is capable of producing accurate results not 
generally obtainable for large values of Re. Results obtained for Re = 100 and 1OOO are in good 
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\ 
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Figure 8. Level i2 curves; Re = 3000, w1 = 0, w 2  = 1,  Ar = 0.0125, A8 = 2.25" 

Table 111. Results showing 1$j",/' rsinO(r8R/8r-2R)dOI on the inner and outer 
spheres. For Re = 100 we used wi = 1 and w2 = 0, and for Re = 1000 and 3000 we used 

w 1  = O  and w 2  = 1 

ICI on ICI on 
Re W, A 4  inner sphere outer sphere YO difference 

100 
100 
100 

1000 
1000 
3000 
3000 
3000 

(0.1, 0.157) 
(0.05, 0.079) 
(0025, 0.039) 
(0.05, 0.079) 
(0.025, 0.039) 
(0.05, 0079) 
(0.025, 0.039) 
(0.0125, 0.039) 

0.4326 
0445 1 
04465 
0.9391 
0-9043 
1-1813 
1.3382 
1.2567 

0.4500 
04479 
0.4464 
0.8907 
0.920 1 
1.0491 
1.2963 
1.3004 

3.9 % 
06% 
002% 
5.2% 
1.7% 

11.2% 
3.1 ?h 
3.4% 

agreement with other published results. Furthermore, the accuracy checks imposed on the 
approximated solution indicate a reasonably high level of accuracy for a Reynolds number of 
3000. These facts suggest that the method is a powerful and accurate one suitable for a difficult set 
of partial differential equations. 
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